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ABSTRACT

The oblique motion of a circular cylinder through an inviscid and incompressible fluid.

conveyed by a uniform flow at infinity, in the vicinity of another cylinder fixed in space is

considered. In a relative polar coordinate system moving with the stream, the kinetic energy of the

fluid is expressed as a function of six added masses due to motions parallel and perpendicular to

the line joining the centers of the cylinder pair. The Lagrange's equations of motion are then

integrated for the trajectories of the moving cylinder. In order to evaluate the added masses and

their derivatives with respect to the separation distance between the cylinders in terms of the

hydrodynamic singularities, the method of successive images, initiated by Hicksl 1], and the

Taylor's added-mass formula are applied, and analytic solutions in closed form are obtained

thereafter. The dynamic behavior of a drifting body in the close proximity of a fixed one is

investigated by considering the limiting values of the fluid kinetic energy and the interaction forces

on each body. The reliability of the numerical approximation of added masses and their derivatives

is also discussed in the present study. The integral equations, in terms of surface source

distributions and their derivatives on both circles, are carefully modified for obtaining accurate

numerical solutions.
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I. INTRODUCTION

The problem presented by motions of two or multiple solid bodies in an inviscid and

-:omrrihle fluid arpears in many research fields. For example, the determination of

hydrodynamic interactions between an offshore structure and floating ice masses is one of the

practical problems in the oil industry. The prediction of the amount of liquid droplets, which are

conveyed by the air flow and collected by a solid surface, is important in the atmospheric icing

research. In all cases concerned, the Reynolds number, which is the ratio of the inertia effect to the

viscous effect, is fairly large such that the potential-flow theory is reasonably applicable.

One and half centuries ago, Hicks 1] first considered motions of two circular cylinders

moving in any manner in an unbounded fluid. He studied the velocity potential due to the

distribution of unit sources spread over each surface which was first assumed to be stationary, and

then found the velocity potential due to the motion of two cylinders by proportionating the

magnitude of each source to the normal motion of the surfaces. His method may be too

complicated to be applied in such cases where the main concern is the motion of solids only. A

general framework for the motion of solids in an inviscid fluid was presented by Lamb [2 ]. He

applied the Lagrange's equations of motion in generalized coordinats to the hydrodynamic

interaction problem and related the fluid inertia to the equations of motion by virtue of the kinetic

energy of the fluid. As an example, he considered one sphere approaching another along their

centerline in a uniform flow. Yamamoto[3] and Isaacson & Cheung[ 4] obtained analytical and

numerical solutions for forces on a pair of cylinders. Yamamoto[3l represented the complex

potential field in terms of an infinite series of doublets by the method of successive images, which

-.'as first introduced by Hicks[ 51 for the motion of a pair of spheres. Yamamoto also derived a

formula for forces, with some mistakest 6], on each cylinder based on the Blasius theorem.

Isaacson & Cheungr 4 ] did the same work numerically and their results agreed very well.

However, their derivations about forces on solids may hardly be generalized to the three-

dimensional problems because of the invalidity of the Blasius theorem. A better way of describing

the motion of solids would be to use the Lagrange's equations of motion and to evaluate the



hydrodynamic interactions, in terms of added masses, by means of the generalized Taylor's added-

mass formula. The application of the method of successive images is limited to certain symmetric

geometries such as a pair of spheres or circular cylinders, due to its dependence on internal isolated

singularities which cannot be found in general. Landweber and Chwang[7 developed a general

formula and a numerical model, based on the boundary integral method, to obtain the added

masses and added moments of inertia by solving the unknown source distributions on solid

surfaces. When two bodies are not quite close to each other, their method gives good numerical

results on added masses for various geometries. However, this technique depends on the

simultaneous solution of a set of Fredholm integral equations of the second kind which may cause

certain inaccuracy when the bodies are very close. There is room for further research to modify the

integral equations in order to cbtain a better result for added masses and their derivatives with

respect to the separation distance in a region where the inviscid and irrotational theory itself is

valid.

Motivated by the lack of studies on the oblique motion of solids, we have investigated *he

hydrodynamic interactions due to the off-center motion of a circular-cylinder pair and obtained

analytical and numerical solutions. The motion of each body is assumed to be pureiy translational

because at any time instant, the moment due to hydrodynamic interactions is zero. The kinetic

energy of the fluid is first expressed in a polar coordinate system moving with the stream in terms

of six added masses of the bodies due to their motions parallel and perpendicular to the line joining

the centers. These added masses are in turn represented in a relative rectangular coordinate system

as a function of the separation distance and of the angle between the uniform flow and the polar

axis. By relating the absolute and relative frames of reference, the equations of motion, in

Lagrangian form, are then integrated numerically for trajectories of the drifting body in space.

In Section 2, we are concerned with the Lagrange's equations of motion expressed in the

relative and the absolute rectangular coordinates. The transformation of added masses from

rectangular coordinates to polar ones is also considered in this section. Section 3 is mainly devoted

to the exact, closed-form solutions of added masses and their derivatives for a pair of cylind% s due
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to centroidal and transversal motions respectively. In Section 4, we have studied the

corresponding rnumerical solution based on the boundary integral method. The integral equations

for the source distribution on each surface are carefully modified and the solutions are compared

with the exact results. The trajectories of the moving body under various conditions are given and

discussed in Section 5. Finally, conclusions are presented in Section 6.

II. EQUATIONS OF MOTION

Consider the motion of two circular cylinders in an unbounded fluid which moves with a

uniform velocity U0 in the x direction at infinity. In an absolute frame of reference fixed in space,

body 1 with center ol move.s with velocities u and v in the x and y directions respectively, and

body 2 with center o2 is fixed in space. Relative to a moving frame of reference, in which the fluid

is at rest at infinity, the center o, located at (xl,yl), moves with velocities Ut and U3 along the x

and y directions respectively, while the center o2, located at (x2,o), moves with velocity U2 along

the x direction (see Fig.la),

U 1 =u-U o , U3 =v, U2 =-U o. (1)

The separation distance s between the centers is given by

s 2 = c 2 + h2, (2)

where c = x, - x2 and h = Yj .

The fluid is assumed to be inviscid and incompressible and the flow irrotational. Hence,

there exists a velocity potential 4 which may be expressed as

( = U1l01 + U 2 02 + U 3 0 3 , (3)

where 01 is the unit velocity potential corresponding to U1=1, U2 = 0 and U3 = 0, etc. The

kinetic energy T of the fluid can then be expressed as

3



2T AIU2 A22 A3 2+2(4

2T = A11U 1 +A 22 U2+A 3 3 U3+2A12 UIU 2 +2A1 3 U 1U 3 +2A23 U2U 3 , (4)

in which Aij's (i~j = 1,2,3) are added masses given by

Aij p f Oi '" dS (no sum on j), (5)

S j on1

Aij - Aji- (6)

p is the mass density of the fluid, n3 = n1 , S3 = S1, nj denotes distance along the outward normal

to the jth body, and the integral extends over its surface Sj.

The motion of body 1, due to the hydrodynamic interaction, can be determined from the

Lagrange's equations of motion,

dU1  d aT aTM1 d -di -U + , (7a)

dU 3  d T T (7b)
M:---- - aU3 DyI 7b

where M, is the mass of body 1 and t is the time. The added mass Aij depends on the separation

distances c and h. From (2), we have

aT _T aT aT dc dh0x -0c' yl- h. d = UI-U2' dt = U3. (8)

From equations (4),(7), and (8), we have

M dU I AIU21 + (A 12 )1 A22 ) U 2 "A 13 1 A 33  2 -A 1
dt -a U+( )U 3 U1 U21 ac 2 ac 2 h ac aU c

___ (A 13 0A 12  aA 23  dU1  dU2 dU 3A U 1U3 +( + )U 2U 3 -(A,,-t- + A12 --- + A13 dt3h O~c Oh Oc )23 -- "

(9a)
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dU 3  1 Atl aA1 3 U2 aA 23 1 A22  2 1 aA 33  2 aA 33= dt a c ) I( D) -- U 3 a U1U 3X--- 2h 0c )1 t'-c 2 0h 2 2 0h 3 0c

aA 13 aA, c)A- +A 33  ,dU 1  dU2 dU3
- + A- ) UIU 2 + U 2 U 3 - (A13t-- + A23dt + A 3 3 dt )"ac ac ah ac d td

(9b)

From (1), we have

dU2 dU1  du dU 3  dv

dt 0, dt =d' dt -d3' U=v. (10)

By means of (1) and (10). we may simplify equations (9a,b) as

du dv 1 A11 2 a A 13 1 aA 33  2 _ A l l(MI + All) Tt + A13 - a" =- 2 h 2ac -v _--h-

+(1 All _ 1 AA2 2  aA 12 )U2 +A + a.12 _A 1 3 _A 23)Uov(S+ )U 2 +(Al+ --- )Uvl(a)
ac 2ac ac 0 Dh @h ac ac

dv du 1 Al 1 aA13 ) u2 1 A33 v2 aA 33(M1 + A33) at-+ A13 -uv

I )AH 1 r)A22 1 2 _Al 1  DA12 aA13 3A2322 + )U _(- + - - - )Uou. (lIb)
h 2 h ah 0 h ah ac ac

The added masses in equations (9a,b) and (1 la,b) are functions of c and h and evaluated in the

rectangular coordinates.

For a pair of circular cylinders, we may represent the motion of body I in a polar

coordinate system centered at (x2 , 0),

x I = x2 + S COSY,

Y = s siny, (12)
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and decompose each added mass into a part depending on the separation distance s and another on

the angle y between the centerline oo2 and the x axis (Fig.lb). Let A'ij (i,j = 1,2,34) be the

added masses evaluated in the polar coordinates corresponding to the unit velocities Ui', where U1

and U> Lire velocities of body I and body 2 respectively along the direction of the centerline 0102,

U3 and U4 are the corresponding velocity ceanponents perpendicular to 0102 (Fig.lb). Since

body 1 and body 2 ire symmetric with respect to the centerline o102, a sign change in U'3 should

not change the fluid kinetic energy in terms of A'ij. Therefore A' 13 =0. Similarly, A' 4 = A'23 =

A : =0. Based on the invariance of the kinetic energy to the coordinate transformation, we obtair

the relation

A11 = A', 1 COS 2y + A' 33 sin 2y, A33 = A' 1 sin 2y +A' 33 cos2"y,

A 2 2 = A 22 cosy, + A' 44 sin 2y, A 12 = A' 12cos 2y( + A 34sin 2y,

A1 3 = (A'I - A' 33) siny cosy, A23 = (A'12 - A' 34)siny cosy. (13)

The derivatives of Aij with respect to c and h are then expressed as functions of s and y,

aA 1  _ 1  , c 2 I -• -a,.-2( +A '33)C°-A. sin
- co-+---- -sin] cosy -A' 1 3)cos siy(--),ac as as

aA II o 'l o '33COS'V

cos2y 4-+ -siny sin + 2-A',I +A' 3)cosy siny( s), etc.a~h os a~s

(14)

Relying on the foregoing transformation, we can consider the added masses due to centroidal and

transversal motions, separately, at any time instant.

III. ADDED MASSES AND THEIR DERIVATIVES

The added masses of two bodies moving through an inviscid and incompressible fluid can

be determined in terms of hydrodynamic singularities within each body, by means of a

6



generalization of Taylor's added-mass theorem [91. For a pair of three-dimensional solids moving

in any manner except pure rotations, the generalized Taylor's added-mass formula is given as

Aicajp + 8ap8ij M' = 41rp [ f -xj XiapdV + Y (miap3 X0j + .iaj3) ]

VP

(no sum on 13), (15)

where Aio,,p are added masses[ 71 of body 3 along the j-th direction due to the unit motion of body

(x in the i-th direction, M'1 is the mass of the fluid displaced by body 03, Xqia and mia'3 are the

volume-distributed source density and the isolated source strength, respectively, inside body P due

to the i-th velocity component of body cc, Ltajp is the strength of an isolated dipole in the j-th

direction inside body 3 associated with the i-th velocity component of body x, xj and xOj are the

j-th local coordinates of Xjp and miap respectively with respect to body 53, the integration is over

the volume of body 3, Vp, and the summation is over all isolated singularities inside V3. The

factor 4 in equation (15) should be changed to 2 for a pair of two-dimensional bodies. The

distributed doublets do not appear explicitly in (15) because, by integration by parts, they are

equivalent to a distribution of sources in Vp3 plus a surface distribution of sources on the

boundary[10 ]. For the present two-dimensional problem, (15) may be simplified as

Aij + ij MJ = 27rp[J -xj X dV + Y, (mi x j + gij) J

(no sum on j), (16)

where the corresponding notations are defined in a similar manner to the foregoing ones.

When two circular cylinders move along the centerline 0102, with velocities U' and U'2

respectively, the method of successive images (Hicks[5], MUller[81) can be applied to obtain added

masses. This method, based on Taylor's added-mass formula (16) and the circle theorem,

produces qimple expressions for added masses in terms of the strengths of isolated doublets inside

circles which represent an equivalent velocity potential due to the motion of solids.

7



Consider first the system of hydrodynamic singularities corresponding to the unit motion of

circle 1 along the centerline oo,, U'I = 1, U'2 = U'3 = U'4 = 0 (Fig.Ib). If circle 2 were absent,

the velocity potential could be represented by a doublet of strength to = a2 located at ol in the

direction of U'l (Fig.2). However, the presence of circle 2 violates the boundary condition on

surface 2 and needs an image doublet of strength 1 = - a2b2/s2 at the inverse point PI inside circle

2 to satisfy the boundary condition on circle 2, where the minus sign for tL indicates that the

doublet is in the opposite direction of U'1 and the point P1 is on the centerline olo 2 with P1 O2 =

b2/s (Fig.2). The presence of this image doublet violates the boundary' condition on surface 1 and

requires another isolated image doublet inside circle 1 and so on. The general expression for the

strengths and positions of the 2n-th (in circle 1) and the (2n+l)-th (in circle 2) doublets is given by

the iterative formula (Rouse et al.l1 11])

.to=a 2, X0 =S,

12n+1 = % )2n

2n

A-2n+ I b-2-

-2n

P'2n+2 = L2n+l

a2

2n+2 = s- , (n- , .(17)X-2nql

where ?-2n denotes the distance from o2 to the n-th inverse point in circle 1 and )-2n+l that from ol

to the (n+l)-th inverse point in circle 2, all inverse points lie on the centerline 0102. As n tends to

infinity, the system of doublets generates the same velocity potential exterior to the circles as that

due to the unit motion of circle 1 along oo2.

8



To find the closed-form expression of added masses from the iterative formula (17), it is

necessary to represent the doublet strength at the n-th iteration in terms of radii a, b, and the

separation distance s. A series expansion of added masses of two spheres due to their centroidal

motion was derived by Hicks[ 51 and Herman[ 121 by means of the method of continued fraction.

Their result was also generalized, with slight modifications, to the case of two or multiple cylinders

by Miuller[81 and Yamamoto[3]. However, an alternative expansion is used in the present study so

that we may find the derivatives of added masses with respect to s easily.

Equation (17) can be reduced to

k2n = a2  (a b) 2 n  (18a)
(X o X2...X2n.) 2

_ (a b)2 n +2

42n+l - (x 2 .. 2  - (n = 0, 1, 2, ... ). (18b)(X.o X2 1 ... ?12n ) 2

For every n, the location of the inverse point satisfies the relations

X2,nk2n+1 = S2 n - b2 , X2n+l X2n+2 = SX2n+l - a2  (19)

After some manipulation, it can be found that

2n-1X2n-2 .... )o = a 2(rl n - r 2
n ) + (rl n + l 

- r2 n+ 1 ) (20a)r, - r2

and
rln+l - r2 n+ (20b)

ri - r2

where

r,2 =-( S2 -a 2 -b 2 )+ j (S2 - a 2 - b 2 ) 2 - 4 a 2 b 2 ]. (21)
2

9



The n-th image-doublet strength inside circle 1 is then

.12n = a2  (a b) 2 n

[a 2 (rln-l+rln-2r 2 +...+r 2 n-1)+(rln+rln-lr 2 +...+r 2n)(

and that inside circle 2 is

t2n+= - (a b) 2n + 2  (22b)L~nl =s2(rln+rlnlr2+...+r2n)

For a fixed n, the limits of sequences {92n), {.g2n+}1 as s approaches (a+b) are derived as

a2 b2

lim 42n- (23a)
s-4(a+b) (n(a + b) + b)

Ur 92n+I = - )2 (23b)

s-4(a+b) (a+b) 2 (n+1)

{42n} and { tz~ } are uniformly convergent for any values of s in the region [a+b,o) since in the

limit, s---(a+b), (23a,b) decay by the rate of 1/n2 and for s > (a+b),

)-2n+2 _ ba 2 < a2n+ =,2 ba 2

2n (X-2nk2n+l) 1 n 2n-1 I 2 0- 1 <2n)

Substitution of 2n and 2n+1 into Taylor's added-mass formula (16) yields the expression

of added masses due to the centroidal motion of two circles in the relative polar coordinates

0 a2

A' 1 = 27rp[ I. 42n - ],
n=0

00

A' 12 = 2Tcp L2n+,

n=O

10



00 b2

A' 22 = 2it [ YnW-
n--

A' 2 1 = A' 12 , (24)

where p is the density of the fluid, .n denotes the doublet strength inside circle 2 due to the unit

motion of itself along the centerline 0102, U'2=1, U'1 =U'3=U'4--O, and is obtained directly by

interchanging a and b in equatio, (17). The limiting values of added masses, as s approaches (a +

b), are obtained from expressions (23a,b) and (24)

lir A' 1 1 = 2 ic P [ a2 b2  a (25a)
s-*(aib) (a + b)2 n +

a2 b 2  a2 b 2

lira A'12 = - 2 nc P (2) =-3.28968 IC P 2(2)b
s-,(a+b) (a+b) (a+b)

where (2) is the zeta function. From (22a,b) and (24), we note that, as s increases from (a+b) to

infinity, the added mass A' 1 decreases monotonically from its limiting value given in (25a) to a

constant 7.pa 2 and the interaction added mass A' 12 increases monotonically from the value given in

(25b) to zero.

To evaluate the derivatives of added masses directly from equation (24) by differentiating

each term of sequences { .L2n) and {IL2n+l) with respect to s, we need to prove that in a certain

region of s, the sequences {dji 21 jds) and {d42n+l/ds) aie uniformly convergent. By taking the

derivatives Of Lt2n and L2n+1 directly from (18), we have

d -2n a 2 a2n b 2n  dds -T2Xnd~- ..X) (26a)
(X2nIX2n.2 .... Xo)3 ('2n.lX2n2....Xo),

11



and
d t2 n~1  2 (a b) 2 n+2  - P+ s d (~Xn1.. 0 2b

ds S3(X2dx 2 -1 .... X 1)2 X2 nX 2 n I.... XI (Xndis.X) 2b

Let H0, be the product X2nlX-2n-2.... Xo, Since, from (21),

dr1  2s r (1!k2 _2s r2 drr=a ,(7
ds -ri-r2 ds -- ri-r2 , andrr(b),2)

the differential part of (26a) becomes

dH0o arHodri + I710dr2
ds - r ds +2ds

2s 3 (-(aib) 2a2 (n+1)(r n1-r n1)+a2(n-1)(r n1-r n1)+n(r n2-r n2)-(n+2)(ab) 2(r r)}.
(r, -r2 )3 1 2 1 2 1 2 1-2

(28)

The limiting value of (26a) for fixed s > (a+b) is

lrn dIL 2n urn 4 a2 (ab) 2 n s =0 (29)
n-+00 ds - 1 .40 F 0

2(r1 -r2)

Based on the ratio test,

li dJ4 2n+ 2/ds - (ab)2  _<1
n--4- d4~2./ds (k2nX2n+l )2

we conclude that the sequence {dp.2n/ds) is uniformly convergent in the region (a+b, 0)

Similarly, we can prove that the sequence {dP.2,+1/ds) is also uniformly convergent in the same

region. Thus, the derivatives of added masses (24) with respect to s are equal to the summations

of derivatives of the corresponding doublet strengths for (a~b) < s <00

From (17) and (24), we have

dp.0  dXO
ds ds

12



d.2,.-,1 d. 2r (bP2 -) + 212n , b" ,d2ds ds t X-nn 2JZ3 ds)

dX.2n+ b 2 "ydX2n

ds + ? 2 n 2Jds)

d .L2,+2 diin+1 a2  )~ +( ~n a 2 YdX2n+ 1
ds ds X2 ni2 + 2 X 2n+13 }' ds '

dX2n+21 + ( a2 ydX2,,l (30)

ds - 12r ds)'

and

___0_ d42n dA' 12  d_2n+ldA" = 2rp 7-&-, 27[p

S=p ds ' ds ds
n=0 n=O

dA'22 =_____ dA' 2 1  dA'12

ds 2 2 X d s 'ds 1ds(
n=0

The region of convergence for derivatives of added masses in (31) is open on the left since the

limiting value of (29) is not zero as s approaches (a+b).

The above analysis for added masses and their derivatives indicates that, as the separation

distance s tends to (a+b), the kinetic energy of the fluid due to the motion of solids is finite but the

hydrodynamic interaction forces, which are functions of the derivatives of added masses with

respect to s, approach infinity.

When two circles make transversal motions perpendicular to the centerline 0102, the

strengths and locations of doublets in each circle can be determined in the same way as that used

for the centroidal motion. Thus, we have

A', I = A' 3 3 , A' 22 = A'4 4 , A' 12 
= -A' 3 4  (32)
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Since the summations of doublet strengths and their derivatives with respect to s, given by

iterative formulas (17) and (30), are convergent to the corresponding solutions of added masses

and their derivatives, we can calculate them numerically based on these iterative formulas and

obtain the results as accurate as we want by increasing the index n to a sufficiently large number.

Practically, if s is larger than 1.5(a+b), an accuracy of five significant figures can be achieved

within a few iterations and for (a+b) < s < 1.01 (a+b), the same accuracy may need several

hundred iterations.

IV. NUMERICAL SOLUTION OF ADDED MASSES AND THEIR DERIVATIVES

The application of the afore-mentioned analysis is limited by the body geometry and flow

conditions since, in general, the velocity potential cannot be expressed in terms of isolated interior

singularities. For bodies of various geometries, however, we may have to evaluate added masses

and their derivatives numerically in terms of certain distributed singularities either inside bodies or

on the body surfaces. Landweber & Chwang[7] has developed a boundary-integral method for

two-body interaction problems based on the generalized Taylor's formula and the fundamental

relation between the velocity potential and normal velocities on solid boundaries. The accuracy of

their method depends on the simultaneous solutions of a set of Fredholm integral equations of the

second kind. Due to the singular behavior of the kernels in these equations, some numerical

inaccuracy in the solutions may be significant when two bodies are very close to each other. In

order to investigate the reliability and to improve the accuracy of numerical results, we shall

consider a pair of circles again and compare the numerical results with exact solutions.

From the work of Landweber & Chwang[7], added masses due to the general translational

motion of a pair of two-dimensional bodies are given by

Aiajp = 2ip f xjOiadS3 -M' 5jjal3 (no sum on J3), (33)
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where p is the density of the fluid, M' (3=1,2) is the mass of the fluid displaced by body P, a ip

denotes the surface source distribution on body P3 due to the i-th unit velocity component of body

ct. and xj is the coordinate of the surface source on body 3. For the relative motion of two circles

concerned in the present study, the unknown surface source distributions satisfy a set of integral

equations

f cos ''12 U', (34a)
i E(P) + F(Q') Cos 12 dS 2 = U-+ U 3  ,fR21 an n,

7c F(Q) + E(P') cos W21 dS' (34b)
fR 12 = 2n2 an2

where E(P) denotes the unknown source strength at point P on circle 1, F(Q) denotes that at point

Q on circle 2, Rij is the distance between the source point on body i and the field point on the

surface of body j, ni indicates the outward normal direction at the field point on the surface of body

i, and Wij is the angle between ni and Rjj (Fig.3a). In the derivation of equation(34a,b), integrals

involving the kernel (cos ifll)/Rly or (cos W122)/R22 reduce to zero for circles, since they are

constant on circles 1 and 2 and the integrals of E and F over closed bodies vanish identically.

To obtain the added masses, we first set U'I = 1, U'2 = U'3 = U'4 = 0. The solution of

(34) for this condition yields the source distributions for evaluating A',1 and A' 12,

2n

A',1 = 27tpa 2 f E(c) cosoz da - pira 2 , (35a)
0

2t

A' 12 = 2nrpb 2 f F(O) cosO dO . (35b)
0

Similarly, A'22 is obtained by using the source density F determined from the condition that U'2 =

1 and U'l = U'3 = U'4 = 0,
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2n

A'22 = 2itpb2 f F(0) cosO dO - pnb 2 . (35c)
0

From (32) and the symmetry argument leading to (13), we have

A' 13 = A' 14 = A'2 3 = A'2 4 = 0, (35d)

A',1 = A'33, A'22 = A' 44 , A'12 =- A'34 . (35e)

The dh.,cnsionless added-mass coefficients may be defined as

kij = A'j/ M'i. (36)

All integrations in equations (34a,b) are regular for s > (a+b). However, by comparing

the analytical solution of added masses from equations (17) and (24) with the numerical result from

integral equations (34) and (35) (Table 1, columns with superscripts "e" and "a"), we recognize

that a considerable deviation in the numerical result takes place when s = a+b+5, 8<< 1. The

numerical error comes mainly from two sources, one due to the ill-conditioned kernels which have

a large and steep peak value of order o(1/5) in the region around ct=nt and 0=0 (Fig.3a), and

another due to the discretization of the integral equations into a set of linear algebraic equations. In

order to remove the peaks, we subtract a function, which has the same peak value and similar

behavior around ---n and 0-0, from the integral and then add the exact integration of the function

back to the equation. Thus, equation(34a,b) is modified to

1E(c)+b f [F(0') cos 'la (a,0') - F(O) gl(o,0')]dO'+bf F(0) g1(oa,0')d0'
o o

= U'1cosct+U' 3sinct, (37a)

27t 2it

nF(0)+a f [E(a') cos 21(',) - E(n) g2(0c',0)]dc&' + a f E(t) g2 (c',0)da'
0 R12 1
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= U'2cosO+U' 4 sinO, (37b)

where
cos Vii-_ a - bcos(O' - c(x) + s cosc, (38a)

R21 (s - b cos0' + a cosx)2 + (b sin0' - a sinox )2

cos W21 _ b - acos(0 - c') - s cosO2-2(38b)
R12 (s - b cos0 + a coscx') 2 + (b sin0 - a sinox' )2

For simple kernels like (38a,b), we may let g, and g2 be (cos W12)/R21 and (cos W21)/R12

respectively. Then integrations of gl and g2 on circles 2 and 1, respectively, give (Fig.3)

Zt 2it b
b f g1 (x,0')dO'= d cos(c -[3), (39a)

0

2r 2it a
a f g2(cC',6)da= d cos(O+ (39b)

0

where
d2 = s2 + a2 + 2 a s cosa, d* 2 =s 2 + b2 -2 s b cosO, (40)

and

CS,2+ d2- a2 ), I*+ COS(S 2 +d* 2 -b 2 ) (41)- 2 d s '-2 d* s "( 1

The positive branches of P and [3* correspond to 0 < cc < it and 0 < 0 < It respectively, and the

negative ones to it < ax < 2it and it < 0 < 2it. Numerical results of k11 and k12, defined by

equation (36), based on the modification are listed in Table 1. From columns with superscript "c"

in Table 1, we note immediately the significant improvement based on equation (37).

Although the integrands in equation (37a,b) vanish at 0--0 and oa=ir, they have not been

quite smoothed in that neighborhood. In this peak region, the difference of source strengths

F(0')-F(0) or E(a')-E(it) is not large, but its product with the ill-conditioned kernel can become
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very large, especially for the centroidal motion, such that it affects the evaluation of the integrals

significantly. The accuracy may be further improved by choosing an appropriate quadrature

formula. It has been proved by Atkinson[ 131 that if the integrand is a periodic function and the

domain of integration is evenly discretized, the trapezoidal rule provides the best numerical

estimation of the integral. However, it is clear that we should put more points in the peak region

and less points in the region where the integrand slopes gently. In the present calculation, we

subdivide the region of integration into two parts, one contains the sharp peak and the other covers

the rest(Fig.4), and in each subdivision, evaluate integrals in Eq. (37a,b) by the Gaussian

quadrature tormula. In order to compare numerical results of the integration in the peak region.

obtained by the Gaussian quadrature formula and by the trapezoidal rule, with the exact solution,

we examine the integral

2n

COf c N12. d, (42)

0

where (cos W12)/R 21 is given by (38a) and (x is the angle between o102 and oP(Fig.3b). At s =

a+b+S and a/b = 1.0, the integrand in (42) has a peak of the order of o(1/5) around 0: = 7r and 0' =

0. The results are given in Fig. 5. From this figure, we observe that the deviation of the

numerical results obtained by the Gaussian quadrature formula from the exact solution is much

smaller than that by the trapezoidal rule. For a/b = I and various values of s, the numerical results

of added-mass coefficients, k,1 and k 12, obtained by the trapezoidal rule with 80 points and by the

Gaussian quadrature formula with 60 points along each circle, are listed in Table l(columns "b"

and "c"). The latter has only less than 1% error at s=2.01, while the former does not converge at s

= 2.01 and has 1.4% error for k 12 at s=2.04. The size of the subdivision on each circle depends

surely on the separation distance s, since the peak becomes sharper as s is closer to (a+b). In the
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present calculation, the divisions are roughly estimated and their sizes, measured by the angle wo

for a=b. are listed in Table 1.

In order to find derivatives of added masses with respect to the separation distance s in

terms of the boundary integrals, it is necessary to evaluate the derivative of the surface source

distribution with respect to s. For two circles, the derivatives are given implicitly by a pair of

Fredholm integral equations of the second kind,

,TEs(ct)+b f [Fs(O) - F(0)]cs ') dO'+o R2 1  (t6)d'

2n - F dC Wos'12 0 ~)b f [F(6') - F(0)] ds R (ot,O) (43a)

7tF,(0)4-a f [E,(cf) - E LT[]OS W41 (cx',O) dcx+
0 R 12

afIE(') -[E. dco0 s WI ( ad(2- Qot',0)dotbaj [Eo) - E(Tt)I ds R 12  (,, (43b)

where Ecnz and Fi0i stand for dE(cx)/ds and dF(O)/ds on circles I and 2 respectively, and

co t12 F -dcos W 2,P(a = b f [ F((O) C s +( F(O) __d (c c I dO
o R2 1  ds R,

2 i b F(0)(4)2 d {F(O) cos( - )- ) [a cos[3 + s cos(x-13)l 1,(44a)

Q() =aj E,(rT)cOs'21 (ct',0) + ET-) dSx 2 i (ot'0') dc'
0o 1 ds R 12  c.)

2 t a E(t)
=- d* {E,() cos(0 + 13*) + d* 2 [b cosP* - s cos(0 + 3*)]). (44b)
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Foilowing the procedure in solving (37a,b), we subdivide the region of integrations into two parts,

and in each subdivision, evaluate integrals in (44a,b) by the Gaussian quadrature formula. The set

of integral equations in (44a,b) is then solved by the Gauss-Seidel iterative method After the

determination of functions E,(ot) and Fs(0), the derivatives of added masses can be obtained by

simple integrations. For example, from (35a) and (35b), we have

dA' 1 I
ds = 27Epa 2 f E,(ox) cost do.,

0

2nt

ds -= 27pb 2 f F(0) cosO dO . (45)
0

An accurate solution of (43a,b) is more difficult to obtain than that of (37a,b) when two

bodies are close to each other, since the kernels d(cos 12/R2 1)/ds and d(cosW2l/R 12)/ds in (44a,b)

have peaks of the order of 0(1/62) in the region around c--n and 0=0. To solve this problem, we

simply add more points in the peak region when s is close to (a+b). For alb=l.0, all integrals in

equations (44a,b) are evaluated by the 160-point Gaussian quadrature for 2.0 < s < 2.1 and by the

60-point Gaussian quadrature for s > 2.1. The numerical values of the derivatives of added-mass

coefficients are compared with the exact ones in Table 2. At s = 2.01, the error for the derivative

of k1 _ with respect to s is 2.6% and that for dk1 /ds is 2.5%. For s > 2.02, however, the results

)f (45) based on solutions of (43a,b) agree with the exact values up to -, significant figures.

Therefore, they may be regarded as exact for all practical purposes.

V. NUMERICAL RESULTS ON TRAJECTORIES

For a pair of circular cylinders, the added masses and their derivatives with respect to s

have been evaluated exactly by the method of successive images and approximately by the

boundary integral method. By (13) and (14), the results obtained in the relative polar coordinates

can be transformed into the Cartesian coordinates in which the motions of bodies are described.
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With A13 = 0 and AII = A 3 3 , the Lagrange's equations of motion(lla,b) are decoupled and

simplified. The instantaneous velocity components u and v of circle 1, which are functions of

added masses and their derivatives with respect to c and h(Fig. 1), are given by the first integration

of (1 la,b) with respect to t. The trajectories of the moving circle around the fixed one, are then

integrated from u and v. In the calculation, the origin of the absolute coordinate system is located

at the center of the fixed body. We assume that the uniform flow conveying the drifting body is

Uo= 1.0 along the x direction at infinity. When two circles are far away from each other, we may

specify the initial condition used in the solution as uo = 1.0, vo = 0.0 for so/(a+b) > 10.

Numerically, we discretize the time t into a number of intervals, 5ti (i--0, 1,2 ... ), and assume that

within each time interval, velocities u and v are constants which are the same as those at the

beginning of the interval. The lengths of 8t are taken as 8ti = 0.1 when x < -3 and 8ti = 0.01

when x is larger than -3.

The computation is started at the initial position (x., yo), where xo = -20 for b = 1, a < 1

and yo varies. At the beginning of each interval 6ti, ui and vi are obtained by the fourth- order

Runge-Kutta integration of (1 la,b) in terms of velocities in the previous interval, ui. 1 and vi-1, the

added masses, and their derivatives. By the end of this interval, the new position of the drifting

circle is given by

x, = xi_ 1 + ui
6ti  and yi = yi-1 + vi ti•

This process is repeated until the separation distance s is equal to or less than (a + b), at which

impact between two bodies takes place. The radii a and b are normalized by that of the fixed

cylinder. Various ratios of a/b, depending on different physical problems, are considered in the

calculation.

We first consider a circular cylinder of ice with radius a = 0.1 and density p=0.91, moving

around a fixed cylinder of radius b=l.0. At yo=0.1, 0.3, etc., the trajectories of the ice particle

are plotted in Figures 6a to 6e for different density ratios of the body to the fluid medium. Fig.6a
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corresponds to the case of an ice particle moving in fresh water and Fig.6e shows the same ice

particle in an air flow. The ratios 2.0, 5.0 and 10.0 correspond to various fluid media and

illustrate the change of trajectories with respect to the density ratio. We note from these figures

that the lower the density ratio is, the larger the curvature of trajectories would be. In the case of

an ice particle carried by an air flow, its trajectories are almost straight lines which differ from the

streamlines greatly. It means that in a fluid of high density, the hydrodynamic interaction due to

the presence of a second body has a large effect on the body's motion.

In some physical problems, for example, in the ice coating process, it is important to

determine whether or not a drifting body, conveyed by a current, can impact with a fixed body.

This physical property can be expressed by a "collection coefficient" E which is defined as the ratio

of a critical initial position y*o, below which the drifting body will impact with the fixed body, to

the radius of the fixed body. y*0 is surely depending on the ratios of a/b and pJp. In this type of

problems, the size of the moving body is much smaller than that of the fixed one. Fig.7 shows

the result of the collection coefficient for a pair of cylinders, 0.01 < a/b < 1, in fluids of different

densities. Moving bodies of very small size are not considered since the Reynold's number

becomes quite small such that the inviscid-fluid theory is not applicable.

Regarding to a floating body in sea water, we can consider the interaction problem between

an ice floe, idealized as a cylinder, and a fixed cylindrical offshore-structure. Fig.8 shows the

trajectories of a circular cylinder in sea water. Here the density ratio p/p is fixed at 0.89, which

corresponds to a floating ice in sea water. The radius ratio a/b is 0.5 in Fig.8a and 1.0 in Fig.8b.

We note that the trajectory of a large body is quite flat in comparison with the one of a small body.

It is understood that the inertia effect of a large body, which prevents the body getting off the

straight path, predominates over the hydrodynamic interaction force due to the presence of a

second body.

For a variety of radius ratios a/b from 0.1 to 1.0 and a fixed density ratio 0.89, the velocity

components u and v of the moving cylinder are shown in Fig.9. The initial condition used in the

calculation is x) = -20, yo = 0.5, u0=1.0, and v. = 0.0. This plot is consistent with the physical
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interpretation. The velocity a is reduced as the moving body approaches the fixed body, and after

a certain position, it increases and reaches a maximum value around the top of the stationary

cylinder. On the other hand, the velocity v increases from zero to a maximum value in

approaching and decreases to zero after the cylinder passes over the fixed one. We also note from

Fig.9 that for x < -2.5, velocity components for cylinders of different radii are of the same value

practically. It indicates that for two bodies apart from each other by a large distance, the

hydrodynamic interaction does not have any effects on their motion.

VI. CONCLUSIONS

The hydrodynamic interaction between two circular cylinders of different radii moving

relative to each other in a general marner is investigated based on the generalized Taylor's added-

mass formula in terms of isolated interior doublets or surface source distributions. The velocity

potential of the fluid is expressed in terms of three independent added masses and their derivatives

with respect to the separation distance, which are functions of relative sizes of the two cylinders

and the separation distance. By extending Hicks' analysis, series expressions have been

developed for derivatives of added masses based on the successive image method. In the general

case of an oblique impact, it has been found that the numerical evaluation of the derivatives of

added masses is more difficult than that of add-ct masses themselves, becausc of the sensitive

dependence of integrals in the integral equations on the separation distance.

The Lagrange's equations of motion governing the motion of a drifting cylinder relative to a

stationary one are integrated to obtain the trajectory of the moving cylinder. The numerical results

exhibit the dependence of the hydrodynamic interaction force on the direction of the flow with

respect to the centerline joining the centers of two cylinders. The velocity component along the

centerline produces a repulsive interaction force, which prevents the collision of two bodies, while

the component perpendicular to it produces an attractive interaction force. Thus, the collision or

non-collision prediction for general oblique motions of two cylinders is much more complicated

than that for the central-impact problem.
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Due to the limitation of the potential-flow analysis, the afore-mentioned results are only

applicable to the situation where the effects of fluid inertia and nonuniformity of the flow due to the

presence of a second body are dominant.
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Table 1. The Analvtic and Numerical Results of Added-Mass

Coefficients for Two Circles (ab =1.0)
S k1le -kl2e kl a  -k 12 a k~lb -k 12 b kllc -k 1 2c 01

2.01 1.3753 0.7283 **** ** **.** 1.3713 0.7214 12.0

2.02 1.3416 0.6924 ***** ** ** 1.1650 0.5159 1.3400 0.6901 12.5

2.03 1.3174 0.6661 1.8778 1.2302 1.2843 0.6330 1.3169 0.6653 13.0

2.04 1.2980 0.6446 1.3963 0.7446 1.2893 0.6358 1.2979 0.6443 13.5

2.05 1.2818 0.6262 1.3148 0.6600 1.2791 0.6236 1.2817 0.6261 14.0

2.06 1.2677 0.6100 1.2805 0.6232 1.2668 0.6092 1.2676 0.6100 14.5

2.07 1.2552 0.5955 1.2604 0.6009 1.2549 0.5952 1.2552 0.5955 15.0

2.08 1.2440 0.5822 1.2462 0.5845 1.2439 0.5821 1.2440 0.5822 15.0

2.09 1.2339 0.5700 1.2384 0.5710 1.2338 0.5700 1.2339 0.5700 15.5

2.10 1.2246 0.5587 1.2250 0.5592 1.2246 0.5587 1.2246 0.5587 16.0

10.0 1.0002 0.0200 1.0002 0.0200 1.0002 0.0200 1.0002 0.0200 90.0

superscript: e - exact solution from the medhod of successive images

a - numerical solution of Eq(34) by the trapezoidal rule with 80 points

b - numerical solution of Eq(37) by the trapezoidal rule with 80 points

c - numerical solution of Eq(37) by the Gaussian quadrature with 60 points

d - o is measured by degrees

- solution not convergent within 50 iterations
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Tabl. 2. T' A nglytk' ini Nurmerical RecIlts Of the De,vxtn-eS
of Added-mass Coefficients for Two Circles (alb=1.0 and o=2001

dk1  dk1 l dk 2  dk 1 2

ds ds ds ds

2.01 -4.22048 -4.10983 4.43434 4.32371

2.02 -2.77334 -2.77325 2.98604 2.98597
2.03 -2.13769 -2.13769 2.34932 2.34931

2.04 -1.76190 -1.76190 1.97240 1.97240

2.05 -1.50575 -1.50575 1.71691 1.71691

2.06 -1.32129 -1.32129 1.52955 1.52955

2.07 -1.17771 -1.17771 1.38485 1.38485

2.08 -1.06291 -1.06291 1.26892 1.26892

2.09 -0.96858 -0.96858 1.17347 1.17347

2.10 -0.88942 -0.88942 1.09319 1.09319

Subscripts: e - exact solution from the iterative formulas (30) and (31)

n - numerical solution of (43ab) and (45) by the Gaussian

quadrature formula with 160 points
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Figure 2. First two images for two circles.
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Figure 3a. Surface integration of source distributions on circles 1 and 2.

Figure 3b. Definition sketch for d, d*, 3, and 3 used in equations (40) and (41).
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Figure 4. Definition of regions containing peaks.
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Figure 6. Trajectories of a moving cylinder in different fluids with

,vb=O. 1, Pa = 0.91. Uo = 1.0, and xo = -20.
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Figure 9. Velocity components u and v of a moving cylinder with various radius
ratios.
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